The excess of Hadamard matrices and optimal designs

نویسندگان

  • Nikos Farmakis
  • Stratis Kounias
چکیده

Hadamard matrices of order n with maximum excess o(n) are constructed for n = 40, 44, 48, 52, 80, 84. The results are: o(40)= 244, o(44)= 280, o(48)= 324, o(52)= 364, o(80)= 704, 0(84) = 756. A table is presented listing the known values of o(n) 0< n ~< 100 and the corresponding Hadamard matrices are constructed. For the remaining values of n = 56, 60, 68, 72, 76, 88, 92, 96 the largest values achieved for the excess are also given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hadamard matrices of order =8 (mod 16) with maximal excess

Kounias and Farmakis, in 'On the excess of Hadamard matrices', Discrete Math. 68 (1988) 59-69, showed that the maximal excess (or sum of the elements) of an Hadamard matrix of order h, o(h) for h = 4m(m -1) is given by o(4m(m 1))≤4(m 1)2(2m + 1). Kharaghani in 'An infinite class of Hadamard matrices of maximal excess' (to appear) showed this maximal excess can be attained if m is the order of a...

متن کامل

Supplementary difference sets and optimal designs

D-optimal designs of order n = 2v ≡ 2 (mod 4), where q is a prime power and v = q2 + q + 1 are constructed using two methods, one with supplementary difference sets and the other using projective planes more directly. An infinite family of Hadamard matrices of order n = 4v with maximum excess (n) = n√n 3 where q is a prime power and v = q2 + q + 1 is a prime, is also constructed. Disciplines Ph...

متن کامل

Computational Strategies for the Generation of Equivalence Classes of Hadamard Matrixes

Hadamard matrices are useful in Hadamard transform spectroscopy and in the construction of optimal chemical designs.'-8 The use of these matrices in spectroscopy has led to the advent of Hadamard transform spectroscopy3 which employs spectroscopic multiplexing techniques and is a powerful tool for the analysis of complex spectra. Besides Hadamard matrices are useful in chemical designs and bloc...

متن کامل

Some Optimal Codes From Designs

The binary and ternary codes spanned by the rows of the point by block incidence matrices of some 2-designs and their complementary and orthogonal designs are studied. A new method is also introduced to study optimal codes.

متن کامل

Skew Hadamard designs and their codes

Skew Hadamard designs (4n−1, 2n−1, n−1) are associated to order 4n skew Hadamard matrices in the natural way. We study the codes spanned by their incidence matrices A and by I +A and show that they are self-dual after extension (resp. extension and augmentation) over fields of characteristic dividing n. Quadratic Residues codes are obtained in the case of the Paley matrix. Results on the p−rank...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 67  شماره 

صفحات  -

تاریخ انتشار 1987